3 resultados para Fresh-water

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A.